Langsung ke konten utama

Persamaan Diferensial Dengan Variabel Terpisah (Lanjutan)


                            Persamaan Diferensial dengan Variabel Terpisah (Lanjutan)

Persamaan Diferensial (PD) orde satu merupakan bentuk PD yang paling sederhana, karena hanya melibatkan turunan pertama dari suatu fungsi yang tidak diketahui. Jika dalam persamaan tersebut variabel bebas dan variabel terikatnya berada pada sisi yang berbeda dari tanda persamaannya, maka disebut PD peubah terpisah dan untuk menentukan penyelesaiannya, tinggal diintegralkan. Jika tidak demikian, maka disebut PD peubah tak terpisah. Suatu PD orde satu yang peubahnya tak terpisah biasanya dapat dengan mudah dijadikan PD peubah terpisah melalui penggantian (substitusi) dari salah satu variabelnya.

Contoh 
               1 . Tentukan penyelesaian dari PD berikut

                   
                     Penyelesaian.
                     karena peubahnya sudah terpisah, maka langsung bisa diintegralkan
                  
               
                    

           
   
        
 
           Jika PD berbentuk 
          
         maka kita harus bentuk menjadi PD peubah terpisah. Jika PD tersebut berbentuk                                      
      yaitu dipisahkan dengan melakukan pembagian 
       
      sehingga diperoleh 
   
    Untuk mencari solusinya, tinggal diintegralkan
    saja, diperoleh 
    
                                                        TERIMA KASIH







          



     


Komentar

Postingan populer dari blog ini

Ukuran Kemiringan Dan Kecembungan

UKURAN KEMIRINGAN DAN KECEMBUNGAN  Hallo sobat semua kali ini kita akan belajar materi ukuran kemiringan dan kecembungan. saya berharap sobat sobat semua bisa mengerti dengan materi ini. tanpa basa basi kita langsung saja ke materinya.  A.       UKURAN KEMIRINGAN Dalam kasus kurva frekuensi populasi, baik yang model postif maupun model negatif terjadi ketidaksimetrisan. Untuk mengetahui derajat ketidaksimetrisan sebuah model populasi digunakan ukuran kemiringan. Ada dua macam kemiringan yang dapat digunakan yaitu ; Ø    Ukuran kemiringan Pearson Dalam ukuran kemiringan Pearson akan melibatkan rerata, median, dan modus. Rumus empiris dari Pearson adalah  “Jarak antara rerata dan modus dalam sebaran yang kemiringannya moderat adalah tiga kali jarak antara rerata dan median.” Koefisien  kemiringan Pearson tipe kesatu atau dilambangkan dengan K mp1 dihitung dengan rumus; Sedangkan, koefisien  kemiringan P...

PERSAMAAN DIFERENSIAL HOMOGEN

PERSAMAAN DIFERENSIAL HOMOGEN Persamaan diferensial yang unsur x dan y tidak dapat dipisah semuanya. F(tx,ty) = t^n .F(x, y). Contoh :     Ciri Umum Homogen : Tiap suku derajatnya sama.   Bentuk PD Homogen: M (x, y)dx + N(x, y)dy = 0 Dikatakan PD Homogen jika: Fungsi M dan N adalah homogen dengan derajat sama. Persamaan ini diselesaikan dengan substitusi :         Contoh soal :   1.        (x + y) dx + x dy =                

PERSAMAAN DIFERENSIAL BERNOULLI

                                          PERSAMAAN DIFERENSIAL BERNOULLI Persamaan diferensial Bernoulli adalah salah satu bentuk dari persamaan diferensial biasa orde satu yang memiliki bentuk umum                                                                                                                                                            Persamaan diferensial Bernoulli sangat mirip dengan  bentuk persamaan diferensial linear orde-1 kecuali ruas kanan memuat faktor y^n...